Lab 3 and 4

Contents

1 Highlighting vertices in a graph 1
2 Part 1: Test for a vertex cover 2
3 Part 2: Maximal independent set 3
3.1 Test for independence . 3
3.2 Maximal independent set . 3

1 Highlighting vertices in a graph

When plotting a graph, it is possible to color certain vertices with another color. This can be achieved with highlight function as presented in the following example:

```
clear; close all;
A = [
    0 1 0 1;
    1 0 1 0;
    0 1 0 1;
    10 1 0
    ]; % Adjacency matrix
C = [1, 3]; % Vertices to highlight
figure;
G = graph(A);
h = plot(G);
highlight(h, C, 'NodeColor', 'r'); % 'r' for red, 'g'
    for green, 'b' for blue, etc.
```


2 Part 1: Test for a vertex cover

Write a program that for a given undirected graph $G=(V, E)$ and a subset of vertices C of V checks whether C is a vertex cover of G. Plot the graph and highlight the vertices of C if C is a vertex cover.

Example of an input is:

```
E = [
    1, 2;
    2, 3;
    4, 5;
    6, 7;
];
C = [1, 2, 3, 4, 5, 6, 7]; % Set of vertices (vertex
    cover)
```

You can use the following pseudocode:

```
Algorithm 1: Test for a vertex cover
    Input : Edge list \(E\), subset of vertices \(C\)
    Output: Boolean value is_vc (true if \(C\) is a vertex cover of \(G\), false
                    otherwise)
    \(i s \_v c=\) true;
    for every edge \(u, v\) in \(E\) do
        covered \(=\) false;
        for \(j=1 \mathbf{T O}|C|\) do
            if \(C[j]==u\) or \(C[j]==v\) then
                covered \(=\) true;
            end
        end
        if not covered then
            is_vc = false;
        end
    end
```


3 Part 2: Maximal independent set

3.1 Test for independence

Write a program which for a given subset of vertices I of an undirected graph $G=(V, E)$ checks whether I is an independent set of G. Plot the graph and highlight the vertices which are in the IS.

You can base your code on the following pseudocode that uses an adjacency matrix representation of G :

```
Algorithm 2: Test for independence
    Input : Adjacency matrix \(A\), set of vertices \(I\)
    Output: Boolean value \(t\) (true if \(I\) is an independent set and false
                otherwise)
    \(t=\) true;
    if \(|I|>1\) then
        for \(v_{\text {index }}=1 \boldsymbol{T O}|I|-1\) do
            \(v=I\left[v_{\text {index }}\right]\);
            for \(w_{\text {index }}=v_{\text {index }}+1 \boldsymbol{T O}|I|\) do
                \(w=I\left[w_{\text {index }}\right] ;\)
                if there is an edge between \(v\) and \(w\) then
                    \(t=\) false;
            end
        end
        end
    end
```


3.2 Maximal independent set

Write a program which for a given graph $G=(V, E)$ finds a maximal Independent Set in it.

You can implement a simple greedy algorithm which is based on the idea of starting from an empty set I, picking vertices of G one by one and adding them to I if I continues to be an independent set.

The algorithm is described in more details in the following pseudocode:

```
Algorithm 3: Maximal Independent Set
    Input : Adjacency matrix \(A\)
    Output: A subset of vertices \(I\)
    \(P=\) a random permutation of vertices \(V\);
    \(I=\varnothing ;\)
    for every vertex \(v\) in \(P\) do
        \(T=I \cup v ;\)
        if \(T\) is an Independent Set then
            \(I=I \cup v ;\)
        end
    end
```

Hint: To find a random permutation of vertices of G you can use the following command: $\mathrm{P}=\operatorname{randperm}(\operatorname{size}(\mathrm{A}, 1))$;

