
Lab 1 and 2

Contents

1 Dijkstra’s algorithm 1
1.1 Dijkstra’s algorithm pseudocode 2
1.2 Dijkstra’s algorithm steps hints 3

1 Dijkstra’s algorithm

Assignment: write a program which for a given graph G = (V,E) finds the
shortest paths between the starting vertex and all other vertices of the graph
using Dijkstra’s algorithm.

For your convenience, we have divided the task into multiple small steps.
Download the file for this lab from the course labs website. Try to implement
one step at a time. Do not try to overcomplicate things from the beginning,
just solve one problem at a time and go step by step while making sure every
step works well. Make sure that the code you are writing is as general as
possible and that it will work with any adjacency matrix (remember, that
the final Dijkstra’s algorithm should work on any given adjacency matrix).

1

1.1 Dijkstra’s algorithm pseudocode

The algorithm is described in more details in the following pseudocode:
Algorithm 1: Shortest Path (Dijkstra’s algorithm)

Input : Weighted adjacency matrix A for graph G = (V,E) ;
// Steps 1 and 2

Output: Vector labels (the shortest paths from vertex 1 to all
vertices of G)

1 starting_vertex = 1; ; // Step 3
2 labels = ∞, ∀v ∈ V ; // Step 4
3 labels(starting_vertex) = 0 ; // Step 4
4 unvisited_vertices(v) = v,∀v ∈ V ; // Steps 5-6
5 for i = 1 TO length(V) do
6 current_label = min label among unvisited vertices ; // Steps

7-8
7 current_vertex = vertex with label current_label ; // Step 9

/* Routine to update labels of vertices adjacent to
current_vertex */

8 for j = 1 TO length(V) do
9 weight = weight of edge current_vertex, j;

10 if weight > 0 then
11 new_label = current_label + weight;
12 if new_label < labels(j) then
13 labels(j) = new_label;
14 end
15 end
16 end
17 unvisited_vertices = unvisited_vertices \{current_vertex} ;

// Step 10
18 end

This pseudocode is a bit different from the one presented in the lectures. It
represents the same algorithm, but it is modified to guide you and help you
with the implementation.

2

1.2 Dijkstra’s algorithm steps hints

Step 1

Create a directed weighted graph G with minimum 6 vertices using adjacency
matrix A (instead of ’1’ if the edge exists, use a weight value for the edge).
If there is no edge, use 01. Use positive integer values for weights. Plot the
graph.

Step 2

Create vector vertices to keep the graph vertices. Initialize it with numbers
from 1 to n, where n is the number of vertices.

Step 3

Create variable starting_vertex, which fixes a single vertex as the "source"
vertex (Dijkstra’s algorithm will find shortest paths from the source to all
other vertices in the graph). Initialize this variable with 1.

Step 4

Create vector labels to keep labels of Dijkstra’s algorithm for the given graph.
The elements of this vector will keep the current labels, the indices are the
numbers of vertices. Initialize it with infinite values for each vertex (Hint:
infinite value is ’Inf’ in MATLAB, initialize the vector with ones and then
multiply by Inf). Change the value for the starting vertex to be 0.

Step 5

Create a logical vector mask_unvisited, which indicates what vertices have
not been visited yet (the number of elements is equal to the number of
vertices and initial value for each vertex is true).

1Please be aware that, theoretically speaking, it is better to use ∞ in the adjacency
matrix if there is no edge. Or, even better, have weights stored in a separate vector and
use just the ordinary 0/1 adjacency matrix. This way we ensure that our algorithm works
with edges that have weight 0, which are supported by Dijkstra’s algorithm (Dijkstra’s
algorithm is not guaranteed to produce an optimal solution only if there are edges with
negative weights in the graph). However, to simplify our implementation we suggest to
stick to the assumption that our program does not support edges with weight 0 and has
the adjacency matrix where 0 represents the lack of an edge.

3

Step 6

Create vector unvisited_vertices, which contains unvisited vertices (num-
bers). Initialize it with all vertices (using the logical vector from the previous
step).

Step 7

Create vector unvisited_vertices_labels, which contains labels for unvisited
vertices. Initialize it using vectors from Step 4 and Step 6.

Step 8

Find the minimum current label, that is the minimum element of the vector
from Step 7 and save it to variable current_label (you can use MATLAB
built-in function to find the minimum element of the vector).

Step 9

Find the vertex, which currently has the minimum label and save it to vari-
able current_vertex. Hint: use vector from Step 7 and value from Step 8
to create a mask, then use function ’find’ to find the index (use 1 as a sec-
ond argument to get the first index if there are several, i.e., find(mask, 1)),
finally apply the resulting index to vector from Step 6.

Step 10

Change the mask for unvisited vertices (vector from Step 5) so, that the
found vertex is not considered in the next iteration of the outer loop.

Finally, implement the routine to update labels of vertices that are adjacent
to the currently visited vertex (it is between steps 9 and 10 in the pseu-
docode).

Add the code which displays the result to the end of the script.

4

	Dijkstra's algorithm
	Dijkstra's algorithm pseudocode
	Dijkstra's algorithm steps hints

