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1 Logical indexing warm-up

In logical indexing, you use a logical array as a mask for the vector subscript.
MATLAB extracts the vector elements corresponding to the nonzero values
of the mask (logical array).

1 v = [1 2 3 4 5]
2

3 mask = logical ([1 1 0 0 1])
4 % or mask = [true true false false true]
5

6 v(mask) % [1 2 5]

Using find function you can get the indices of the elements which satisfy
the mask.
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1 v = [1 2 3 1 2 3]
2

3 mask = [false false true false false true]
4

5 equal_to_three = v(mask) % [3 3]
6

7 equal_to_three_index = find(mask) % [3 6]
8

9 equal_to_three_index = find(mask , 1) % 3

You can filter the elements of an array by applying conditions to the
array. Applying conditions to the array returns the logical array. You can
use this logical array as a mask to filter out not needed elements.

1 a = 1:2:20
2

3 mask = a<10 & a~=3
4

5 less_than_ten_and_not_three = a(mask)
6

7 less_than_ten_and_not_three_indices = find(mask)

2 Visualising graphs warm-up

2.1 Plotting a single graph

You can plot a graph using graph or digraph and plot functions. Functions
graph and digraph take adjacency matrix as an input. Command figure
creates a new window with a figure to plot in it. Function plot draws a visual
representation of the graph in the last opened figure window. Command
close all closes all open figure windows and is often used in the beginning
of a script along with clear command. Try the following example:

1 clear; close all;
2

3 A = [
4 0 1 0 1;
5 1 0 1 0;
6 0 1 0 1;
7 1 0 1 0
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8 ];
9

10 figure;
11 G = graph(A);
12 plot(G);

Or with a directed graph:

1 clear; close all;
2

3 A = [
4 0 1 0 1;
5 0 0 1 0;
6 0 1 0 0;
7 0 1 1 0
8 ];
9

10 figure;
11 G = digraph(A);
12 plot(G);

2.2 Plotting several graphs

If more than one plot command is called for one figure window, by default
Matlab will display only the result of the last plot call. figure can be used
to create more than one figure window.

For example:

1 clear; close all;
2

3 A = [
4 0 1 0 1;
5 0 0 1 0;
6 0 1 0 0;
7 0 1 1 0
8 ];
9

10 figure;
11 G = digraph(A);
12 plot(G);
13
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14

15 figure; % create a second window for the second graph
16 G2 = digraph(A'); % digraph of the transposed

adjacency matrix
17 plot(G2);

Alternatively, a pause command can be used to plot graphs in the same
window one by one. The pause command pauses the execution of the pro-
gram until the user continues it by pressing Enter in the command window.
For example:

1 clear; close all;
2

3 A = [
4 0 1 0 1;
5 0 0 1 0;
6 0 1 0 0;
7 0 1 1 0
8 ];
9

10 figure;
11 G = digraph(A);
12 plot(G);
13

14 pause; % pause after plotting the first graph
15

16 G2 = digraph(A'); % digraph of the transposed
adjacency matrix

17 plot(G2);

2.3 Storing edge lists

To store an edge list you can use an n× 2 matrix (or 2×n), where each row
(or column) consists of two numbers: u and v of the e = (u, v) edge. For
example, the following code shows how you can store edge list [(1, 2), (2, 3),
(2, 1), (3, 4)] in an n× 2 matrix.

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
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2.4 Plotting a graph using edge list

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4; 1, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 figure;
4 plot (G);

2.5 Plotting a graph using edge list and edge weights

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4; 1, 4];
2 edge_weights = [1 1 2 2 3];
3 G = graph(edge_list (:,1), edge_list (:,2),

edge_weights);
4 figure;
5 plot (G, 'EdgeLabel ', G.Edges.Weight);

2.6 Plotting a graph using edge list and node labels

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 G.Nodes.Name = {'First' 'Second ' 'Third' 'Fourth '}';
4 figure;
5 plot (G);

2.7 Adding edges to a graph

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 % To add edge (1,3) with weight 4:
4 G = addedge(G,1,3,4)

2.8 Adding nodes to a graph

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 % To add node 5:
4 G = addnode(G,5)
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2.9 Removing edges from a graph

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 G.Nodes.Name = {'First' 'Second ' 'Third' 'Fourth '}';
4 % To remove edge (2,1):
5 G = rmedge(G,2,1)
6 % or
7 G = rmedge(G,3)
8 % or
9 G = rmedge(G,'Second ','First')

2.10 Removing nodes from a graph

1 edge_list = [1, 2; 2, 3; 2, 1; 3, 4];
2 G = graph(edge_list (:,1), edge_list (:,2));
3 G.Nodes.Name = {'First' 'Second ' 'Third' 'Fourth '}';
4 % To remove node 1:
5 G = rmnode(G,1)
6 % or
7 G = rmnode(G,'First')

Task 1

Create a vector with the following elements: 1, 4, -2, 7, -4, 5, 10, 15. Using
logical indexing and find function do the following:

• Display all positive elements of the vector

• Display the indices of all positive elements of the vector

• Display all elements of the vector except the third element

• Display all even elements of the vector

• Display the indices of all even elements of the vector

• Display all elements of the vector with even indices
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Task 2

Create an adjacency matrix for an undirected graph with 6 vertices. Plot
a graph using this adjacency matrix. Create an edge list for the same graph.
Plot a graph using this edge list. Check that it is the same graph.

Task 3

Modify the script from task 2 so that it works with a directed graph.

Task 4

• Write a program which creates an edge list representation of an adja-
cency matrix of a directed graph. Test the program on several graphs
from Homework 1 of the theoretical part of the course. Plot the graphs.

• Write a program which given an edge list converts it to an adjacency
matrix. Test the program on the resulting edge lists from part 1 (you
can write the code in the same program as in part 1 and simply use
the resulting edge lists from there or start a new script) and check that
the resulting adjacency matrix is the same as the original adjacency
matrices used in part 1. Plot the graphs.

Hint: if you want to create a new matrix of the same size as an existing
one and fill it with zeros, you can use the following code, where A is the
existing matrix.

1 new_A = zeros(size(A));

Hint: in order to plot several graphs use figure or pause
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