
Lab 2

Contents

1 Vectors 2
1.1 Array . 2
1.2 Vector . 2
1.3 Row vectors . 2
1.4 Column vectors . 2
1.5 Operations with vectors . 3
1.6 Other ways to create vectors 3
1.7 Sum of all elements in a vector 4

2 Matrices 4
2.1 Working with matrices . 4
2.2 Matrix operations . 5
2.3 Matrix creation . 6
2.4 Iterating through all elements of the matrix 7

2.4.1 Print each element separately 7
2.4.2 Adding 2 to each element 7
2.4.3 Finding the sum of all elements 8
2.4.4 Finding max element 8
2.4.5 Print matrix line by line 9

3 Logical arrays 9

4 Vectorization 10

5 Homework 2 11

1

1 Vectors

1.1 Array

An array, is a data structure consisting of a collection of elements (values or
variables), each identified by at least one array index or key.

1.2 Vector

Vector is one-dimensional array.

1.3 Row vectors

1 driverSalary = [1000, 2000, 3000, 4000];
2

3 driverSalary
4 driverSalary (1)
5 driverSalary (2)
6 driverSalary(end)
7 driverSalary (1:3)
8 driverSalary (:)
9

10 driverSalary (2) = driverSalary (2) -200;
11 driverSalary
12

13 length(driverSalary)
14 size(driverSalary)

1.4 Column vectors

Note semicolon instead of comma.

1 driverSalary = [1000; 2000; 3000; 4000];
2

3 driverSalary
4 driverSalary (1)
5 driverSalary(end)
6 driverSalary (:)
7

8 length(driverSalary)
9 size(driverSalary)

2

1.5 Operations with vectors

1 % change all elements of a vector
2 driverSalary = driverSalary + 1000
3 driverSalary = driverSalary - 1000
4 driverSalary = driverSalary * 1000
5 driverSalary = driverSalary / 1000
6

7 array1 = [10, 20, 30];
8 array2 = [30, 20, 10];
9

10 % element -wise operations
11 array1 + array2
12 array1 - array2
13 array1 .* array2
14 array1 ./ array2
15

16 % vectors concatenation
17 [array1 , array2]
18

19 % transpose
20 array1 '
21 array1 ''
22

23 % concatenation again
24 [array1; array2]

1.6 Other ways to create vectors

1 1:1:10
2 % or
3 1:10
4

5 1:2:10
6

7 -1:-1:-10
8

9 1: -1:10 % empty vector -- we cannot create a vector
from 1 to 10

3

10 % with step -1
11

12 linspace(1, 10, 5)
13

14 zeros(1, 10)
15 ones(1, 10)
16 rand(1, 10)
17

18 % and many other

1.7 Sum of all elements in a vector

1 clear;
2

3 vector = [1, 20, -3, 5, 6];
4 vector_length = length(vector);
5

6 sum = 0;
7

8 for i = 1: vector_length
9 element = vector(i);

10 sum = sum + element;
11 end

2 Matrices

Matrices are two-dimensional arrays. Each value in a matrix is identified by
a pair of numbers: row and column.

2.1 Working with matrices

Matlab syntax for an element at row r and column c of the matrix M is M(r,
c).

Examples:

1 a = [10, 20.11; 3.18, pi];
2

3 a
4 a(1, 1) % element at the first row and first column

4

5 a(2, 1) % element at the second row and first column
6 a(end , 1) % element at the last row and first column
7 a(1:2, 1) % first and second rows of the matrix a and

the first column
8 a(1, :) % first row of the matrix a
9 a(:, 2) % second column of the matrix a

10

11 a(2, 2) = -2; % changing value at the second row and
second column

12 % to -2
13 a(2, :) = a(2, :) + 3; % add 3 to all elements in the

second row
14 a(:, 1) = a(:, 1) - 1; % add -1 to all elements in

the first column
15 a
16

17 size(a) % returns size of the matrix
18 size(a, 1) % returns the number of rows in the matrix
19 size(a, 2) % returns the number of columns in the

matrix
20 length(a) % returns the maximum of the number of

columns and the number of rows
21 numel(a) % returns the number of elements in the

matrix

2.2 Matrix operations

Very similar to operations with vectors.

1 % change all elements of the matrix a
2 a = a + 10
3 a = a - 10
4 a = a * 10
5 a = a / 10
6

7 matrix1 = [10, 20; 30, 40];
8 matrix2 = [30, 20; 10, 66];
9

10 % element -wise operations
11 matrix1 + matrix2

5

12 matrix1 - matrix2
13 matrix1 .* matrix2
14 matrix1 ./ matrix2
15

16 % matrix operations
17 matrix1 * matrix2
18 matrix1 / matrix2
19

20 % matrix concatenation
21 [matrix1 , matrix2]
22 [matrix1; matrix2]
23

24 % adding a column
25 matrix = [1, 2; 1, 2];
26 column = [3; 3];
27 matrix = [matrix , column];
28 % or
29 matrix = [matrix column];
30

31 % adding a row
32 matrix = [1, 1; 2, 2];
33 row = [3, 3];
34 matrix = [matrix; row];
35

36 % removing a row
37 matrix = [1, 1, 1; 2, 2, 2; 3, 3, 3];
38 matrix(3, :) = [];
39

40 % removing a column
41 matrix = [1, 2, 3; 1, 2, 3; 1, 2, 3];
42 matrix(:, 3) = [];
43

44 % transpose
45 a'
46 a''

2.3 Matrix creation

1 zeros(5, 10)

6

2 ones(6, 10)
3 rand(7, 10)

2.4 Iterating through all elements of the matrix

In order to work with elements of the matrix one-by-one, we need to use
nested loops.

2.4.1 Print each element separately

In the following example we print each element separately:

1 clear;
2

3 M = rand(4, 4);
4

5 number_of_rows = size(M, 1);
6 number_of_columns = size(M, 2);
7

8 % for each row
9 for row = 1: number_of_rows

10 % for each column
11 for column = 1: number_of_columns
12 disp(M(row , column)); % print value
13 end
14 end

2.4.2 Adding 2 to each element

In the following example we add 2 to each element:

1 clear;
2

3 M = zeros(4, 4);
4

5 number_of_rows = size(M, 1);
6 number_of_columns = size(M, 2);
7

8 % for each row
9 for row = 1: number_of_rows

7

10 % for each column
11 for column = 1: number_of_columns
12 M(row , column) = M(row , column) + 2; % add 2
13 end
14 end

2.4.3 Finding the sum of all elements

In the following example we are calculating the sum of all elements in the
matrix:

1 clear;
2

3 M = [1, 2, 1; 4, 5, 2; 1, 3, 2];
4 sum_of_elements = 0;
5

6 number_of_rows = size(M, 1);
7 number_of_columns = size(M, 2);
8

9 % for each row
10 for row = 1: number_of_rows
11 % for each column
12 for column = 1: number_of_columns
13 sum_of_elements = sum_of_elements + M(row ,

column);
14 end
15 end
16

17 disp(sum_of_elements);

2.4.4 Finding max element

In the following example we are looking for the largest element:

1 clear;
2

3 M = [1, 2, 1; 4, 5, 2; 1, 3, 2];
4 maximum = M(1, 1);
5

6 number_of_rows = size(M, 1);

8

7 number_of_columns = size(M, 2);
8

9 % for each row
10 for row = 1: number_of_rows
11 % for each column
12 for column = 1: number_of_columns
13 if M(row , column) > maximum
14 maximum = M(row , column);
15 end
16 end
17 end
18

19 disp(maximum);

2.4.5 Print matrix line by line

In the following example we are printing the matrix one row at a time:

1 clear;
2

3 M = rand(4, 4) ;
4 number_of_rows = size(M, 1) ;
5

6 % for each row
7 for row = 1: number_of_rows
8 disp(M(row , :)) ; % print value
9 end

3 Logical arrays

Logical arrays consist of logical true/false values.

1 a = [true true false]
2

3 b = [true false; false true]
4

5 c = logical ([1 1 0])
6

7 % any nonzero value is logical true

9

8 d = logical ([2 -3 0])
9

10 % row vector with 3 elements
11 e = true (1,3)
12

13 % matrix 3x3
14 f = false (3)

Logical function any(v) returns true if at least one element of vector v
is true.

Logical function all(v) returns true if all elements of vector v are true.

1 a = [true true false]
2

3 any(a)
4 all(a)
5

6 b = [true true true]
7 all(b)

You can filter the elements of an array by applying conditions to the array.
Applying conditions to the array returns the logical array. Applying logical
array to the array filters out not needed elements. Using find function you
can get the indices of the elements which satisfy the conditions.

1 a = 1:2:20
2

3 mask = a<10 & a~=3
4

5 less_than_ten_and_not_three = a(mask)
6

7 less_than_ten_and_not_three_indices = find(mask)

4 Vectorization

Matlab is optimized for operations involving matrices and vectors. The pro-
cess of revising loop-based code to use Matlab matrix and vector operations
is called vectorization.

Vectorized code is often shorter and runs much faster than the corre-
sponding code containing loops.

10

1 % This code computes the sine of 11 values ranging
from 0 to 1

2 i = 0;
3 for t = 0:.1:1
4 i = i + 1;
5 y(i) = sin(t);
6 end
7

8 % This is a vectorized version of the same code
9 t = 0:.1:1;

10 y = sin(t);

Vectorization is also performed using logical arrays.

1 a = [2 -4 5 9 -6 4 -5];
2

3 % Calculate the sum of all positive elements of the
array

4 s = 0;
5 for i=1: length(a)
6 if a(i)>0
7 s = s + a(i);
8 end
9 end

10

11 disp(s)
12

13 % Vectorized version of the same code
14 s2 = sum(a(a>0));
15 disp(s)

5 Homework 2

Task 1

• Create a vector with 10 random numbers from 0 to 100.

• Display the value of the 4th element of the vector.

• Decrease the value of the 2nd element of the vector by 30.

11

• Increase values of all elements of the vector by 50.

• Display the elements of the vector on positions 6 to 10.

Task 2

Write a script which computes the product of all positive elements of the
vector v using for loop. Define vector v in the code so, that it contains both
positive and negative elements.

For example, for a vector v = [2, -3, -5, 6] you should get 12.

Task 3

Write code which finds the sum of all positive numbers in a matrix using
for loop. Define matrix M in the code so, that it contains both positive and
negative elements.

For example, for a matrix M = [1, -10, 20; 3, -5, -3]; the result
should be 24.

Task 4

Write a script which asks the dimension of the matrix from the user, fills
it with random numbers and prints the maximum elements of each row
(without using Matlab built-in function max). Print the matrix itself also.

Task 5

Vectorize the following code (re-write the code without for loops):

1 tic
2 i = 0;
3 for inc = 0: 0.5: 3
4 i = i + 1;
5 my_vector(i) = sqrt(inc);
6 end
7

8 disp(my_vector)
9

10 M = [1 5 -7; -4 0 2; 0 -9 5]
11

12 [num_of_rows , num_of_columns] = size(M);
13 new_M = zeros(num_of_rows , num_of_columns);

12

14 for i = 1: num_of_rows
15 for j = 1: num_of_columns
16 new_M(i,j) = sign(M(i,j));
17 end
18 end
19

20 disp(new_M)
21 toc

Functions tic and toc measure the performance of the code. Use them
to compare the performance of your code with the performance of the code
with for loop.

Note: vectorization is not always possible! Sometimes we have to use
loops, for instance in case of more complicated calculations for matrix ele-
ments which could not be done with Matlab build-in vectorized functions.

13

	Vectors
	Array
	Vector
	Row vectors
	Column vectors
	Operations with vectors
	Other ways to create vectors
	Sum of all elements in a vector

	Matrices
	Working with matrices
	Matrix operations
	Matrix creation
	Iterating through all elements of the matrix
	Print each element separately
	Adding 2 to each element
	Finding the sum of all elements
	Finding max element
	Print matrix line by line

	Logical arrays
	Vectorization
	Homework 2

