
Lab 1

Contents

1 Command line basics 2
1.1 The most important windows in Matlab 2
1.2 Changing working directory 2
1.3 Simple Matlab commands . 2
1.4 Creating variables . 3
1.5 Semicolons . 3
1.6 Special variable ans . 4
1.7 Variables names . 4
1.8 Do not use these variables names 4
1.9 clear command . 4
1.10 lookfor function . 4
1.11 help function . 4
1.12 doc function . 5

2 Scripts 5
2.1 Write a script . 5
2.2 Importance of clear . 5
2.3 Debugging (breakpoints) . 6

3 Receiving user input 6

4 Conditional statements 6
4.1 Boolean data type . 6
4.2 Conditional expressions . 6
4.3 if statement . 7
4.4 else statement . 7
4.5 elseif statement . 8
4.6 and/or/not operators . 9

4.6.1 And . 9
4.6.2 Or . 9

1

4.6.3 Not . 9

5 Switch statement 10

6 For loops 10
6.1 Hello world 20 times . 10
6.2 Hello world with numbers . 11
6.3 Sum of numbers from 1 to 10 11

7 While loops 11
7.1 Infinite loops . 11
7.2 break statement . 12
7.3 continue statement . 14

8 Homework 1 15

1 Command line basics

1.1 The most important windows in Matlab

• Workspace

• Command window

• Script editor

1.2 Changing working directory

Use "Current folder" window or cd command (for more information see
https://se.mathworks.com/help/matlab/ref/cd.html).

1.3 Simple Matlab commands

1 3 + 5
2 3 * 4
3 4 ^ 2
4

5 sqrt (4)
6

7 disp('Hello , World!')

2

https://se.mathworks.com/help/matlab/ref/cd.html

1.4 Creating variables

1 a = 5
2 b = 10/2
3

4 salary = 1200;
5 taxes = 110;
6 salary_after_taxes = salary - taxes
7

8 num_employees = 10;
9 total_salary = salary * num_employees;

10

11 disp(total_salary);
12

13 text = 'Hello , World!';
14 disp(text);
15

16 courseName = 'TNK055 ';

Variables can be observed in the Workspace pane.

1.5 Semicolons

Semicolon suppresses output of the code line.
Without a semicolon Matlab will print the result of the command exe-

cution.

1 >> a = sqrt (4)
2

3 a =
4

5 2
6

7 >>

When we use a semicolon Matlab suppresses the output.

1 >> a = sqrt (4);
2 >>

3

1.6 Special variable ans

1 5 * 5
2 disp(ans);

1.7 Variables names

Requirements for naming a variable are as follows:

• first character must be a LETTER

• after that, any combination of letters, numbers and _

• CASE SENSITIVE! (var1 is different from Var1)

1.8 Do not use these variables names

• i, j - they can be used for complex numbers

• pi

• ans

• Inf

• NaN

1.9 clear command

Clears the current workspace (i.e., deletes all variables from it)

1 clear;

1.10 lookfor function

Searches for the specified keyword. Helps to find the name of the function.
For example: lookfor sine

1.11 help function

Shows information about functions. For example: help sin

4

1.12 doc function

The same as help, but looks better. For example doc sin

2 Scripts

2.1 Write a script

1 % everything after percent sign until the end of the
line is ignored by Matlab

2 clear; % clears workspace (deletes all variables from
it)

3

4 profit = 1200; % Profit from selling an item in US
dollars

5 sold = 20; % Number of sold items
6 owners = 3; % How many people share profit
7

8 profit_per_owner = (profit * sold)/owners; % Profit
of each owner

9

10 disp('The profit per owner is:');
11 disp(profit_per_owner);

Matlab executes all commands line by line from top to bottom each time
you run the script.

2.2 Importance of clear

Unlike many other programming languages, Matlab keeps all variables in the
workspace even after the end of the script execution, unless clear command
is called. If we forget to use clear, it may lead to potential mistakes. For
example, try to initialize variable a = 10; and then try to run the following
script several times

1 a = a + 1;
2 disp(a);

You may observe that variable a saves the value of the variable between
runs and increases it each time.

5

2.3 Debugging (breakpoints)

You can put breakpoint on a line and Matlab will pause before executing
this line. You can check the state of all variables, change them, etc. In order
to continue, you can use either "Continue" button or "Step" button. "Con-
tinue" button (shortcut F5) allows to run through breakpoints, so Matlab
continues execution of code until the next breakpoint. "Step" button (short-
cut F10) executes only one line and stops before executing the next line.
"Step" button can be used to run the code line by line.

3 Receiving user input

In Matlab, it is possible to interactively ask for user input using command
input(). It is possible to print some text as an invitation for a user. The
user is expected to write some value using his/her keyboard and hit Enter
when done.

1 clear;
2 price = input('Please write the price of an item and

press Enter: '); % The text between parenthesis
will be printed as an invitation

3 amount = input('Please write amount of items to order
and press Enter: '); % The text between

parenthesis will be printed as an invitation
4

5 total = price*amount
6 disp('The total price is:')
7 disp(total)

4 Conditional statements

4.1 Boolean data type

Boolean data type takes one of two possible logical values: "true" or "false".
Matlab stores "false" and "true" as 0 and 1 respectively.

4.2 Conditional expressions

The result of a conditional expression is of boolean type.
Examples of conditional expressions

6

1 a = 10;
2

3 a < 30 % true
4 a > 20 % false
5 a == 10 % true
6 a == 11 % false

4.3 if statement

if statement allows you to perform different computations or actions de-
pending on whether a condition evaluates to true of false.

Basic syntax is:

1 if condition
2 code
3 end

Example:

1 a = 10; % try to change the value!
2

3 if a > 9
4 disp('a is greater than 9');
5 end
6

7

8 if a < 20
9 disp('a is less than 20');

10 end

4.4 else statement

Code in the else block will be executed if condition is false.
Basic syntax:

1 if condition
2 code1
3 else
4 code2
5 end

7

Example:

1 a = 20;
2

3 if a < 40
4 disp('a is less than 40');
5 else
6 disp('a is greater than 40');
7 end

4.5 elseif statement

elseif statement allows to combine several conditions. Only the code fol-
lowing the first condition that is found to be true will be executed. All other
code will be skipped.

Basic syntax:

1 if condition1
2 code1
3 elseif condition2
4 code2
5 elseif condition3
6 code3
7 ...
8 else
9 code

10 end

Examples:

1 a = 10; % try to set a = 4; a = 5; a = 6;
2

3 if a > 5
4 disp('a > 5');
5 elseif a < 5
6 disp('a < 5');
7 else
8 disp('a == 5');
9 end

8

4.6 and/or/not operators

If you want to have complex conditions which consist of more than one logical
statement, you can use logical "and", "or" and "not" operators.

4.6.1 And

The "and" of two or more conditions is true if each of the conditions is true.
For example, a and b is true only if a and b are both true.

In Matlab, logical "and" is written as &&.
Example:

1 a = 10;
2

3 if a > 5 && a < 15
4 disp('a > 5 and a < 15');
5 else
6 disp('a <= 5 or a >= 15');
7 end

4.6.2 Or

The "or" of two or more conditions is true if at least one of the conditions
is true. For example, a or b is true if either a or b (or both) are true.

In Matlab, logical "or" is written as ||.
Example:

1 a = 10;
2

3 if a < 5 || a > 9
4 disp('a < 5 or a > 9');
5 else
6 disp('9 => a >= 5');
7 end

4.6.3 Not

not operator negates the condition. If a is true, then not a is false. If a is
false, then not a is true.

In Matlab, logical "not" is written as ~.
Example:

9

1 a = 10
2

3 if ~(a > 0)
4 disp('a <= 0');
5 else
6 disp('a > 0');
7 end

5 Switch statement

1 clear;
2 n = input('Enter a number: ');
3

4 switch n
5 case -1
6 disp('negative one')
7 case 0
8 disp('zero')
9 case 1

10 disp('positive one')
11 otherwise
12 disp('other value')
13 end

6 For loops

For loop is used for a known number of iterations.

6.1 Hello world 20 times

1 clear;
2

3 for i=1:20
4 disp('Hello , world!');
5 end

10

6.2 Hello world with numbers

1 clear;
2

3 for i=1:20
4 disp('Hello , world!');
5 disp(i);
6 end

6.3 Sum of numbers from 1 to 10

1 clear;
2

3 to = 10;
4 sum = 0;
5

6 for i = 1:to
7 sum = sum + i;
8 end

7 While loops

While loop repeats code while the condition is true.

1 clear;
2

3 n = 5;
4

5 while n > 1
6 n = n-1;
7 disp(n);
8 end

7.1 Infinite loops

Be careful, an infinite loop (it is a loop which never ends on its own) is
possible with while, for example

11

1 % This loop will be running forever
2 clear;
3

4 n = 5;
5

6 while n > 1 % initially n > 1
7 n = n+1; % and we increasing n each iteration ,

hence the loop will never end
8 disp(n);
9 end

7.2 break statement

break statement stops the loop immediately. No further iterations will be
done. This statement works with both while and for loops.

In the following example we use break to exit the infinite cycle.

1 clear;
2

3 n = 5;
4 while n > 1
5 n = n+1;
6

7 if n > 100 % when n > 100
8 break % we stop the loop
9 end

10 disp(n);
11 end

The following code will stop printing after 3 because the loop is termi-
nated when a == 4.

1 clear;
2

3 for a=1:5
4 if a == 4
5 break
6 end
7

8 disp(a);

12

9 end

In the following example the loop stops when the user chooses 0 as the
input.

1 clear;
2 secret = 3;
3 guess = 0;
4

5 while guess ~= secret
6 guess = input('Guess my secret number between 1

and 10 (to exit enter 0):');
7

8 if guess == 0
9 disp('You chose to exit.');

10 break
11 end
12

13 if guess == secret
14 disp('Correct!');
15 else
16 disp('Try again >>');
17 end
18 end

Also this program can be implemented using infinite loops:

1 clear;
2 secret = 3;
3 guess = 0;
4

5 while 1 == 1 %force the loop to be infinite
6 guess = input('Guess my secret number between 1

and 10 (to exit enter 0):');
7

8 if guess == 0
9 disp('You chose to exit.');

10 break
11 end
12

13 if guess == secret
14 disp('Correct!');

13

15 break
16 else
17 disp('Try again >>');
18 end
19 end

7.3 continue statement

continue statement allows to skip the rest part of the code in current itera-
tion and to go to the next iteration of the loop. This statement works with
both while and for loops.

In the following example "Hello, world!" text will not be printed, because
continue is the first statement in the for loop.

1 clear;
2

3 for a=1:5
4 continue
5

6 disp('Hello , world!');
7 end

And the following code will print "Hello, world!" 5 times and "Good bye,
world!" only 3 times because of the continue command before the second
disp command.

1 clear;
2

3 for a=1:5
4 disp('Hello , world!');
5

6 if a > 3
7 continue
8 end
9

10 disp('Good bye , world!');
11 end

14

8 Homework 1

Task 1

Write a program that computes the area of a triangle or a parallelogram. Let
the user input the type of their figure (1 for triangle, 2 for parallelogram),
the height, and the base. Print the result or an error message in case of
wrong user input.

Task 2

Write a script to input electricity unit charges and calculate total electricity
bill according to the given conditions:

• For the first 1000 units - 1.5 SEK/unit

• For the units above 1000 - 2.0 SEK/unit

• If units number is negative, display an error message

You can test your program on the following data:

• If number of units is -100, an error message is printed

• If number of units is 100, total amount to pay is 150 SEK

• If number of units is 3000, total amount to pay is 5500 SEK

Task 3

Write a script which asks user to enter a number from 1 to 5 and prints it
using words (like "one" for 1). Use switch statement. In case of wrong user
input display an error message.

Task 4

Modify Task1 so, that the script does not stop until the user enters 0, when
asked for the figure type. So, 1 means triangle, 2 - parallelogram, 0 - exit
the script, any other digit - error message.

15

Task 5

Write a program that calculates the total price for several movie tickets.
Each ticket price depends on the age of the ticket’s owner.

• If the owner is over 65 years old then the ticket costs 96 SEK

• For children younger than 12 years the price is 105 SEK

• Otherwise, the owner pays 120 SEK

Your program should perform the following task by the given order.

1. Ask the number of tickets to be bought. This number should be be-
tween 1 and 10. Assume that the user enters an integer value, but
validate the input to be within the range. If the number of tickets
given is incorrect then the script should display an error message and
request the user to enter the number of tickets again.

2. Request the age of each ticket owner. Assume that the user always
gives a non-negative integer for each age, i.e. no need to validate the
input.

3. Display the total price to be paid.

A running example is shown below (user input shown in red).

Welcome to our Filmstaden!
Enter number of tickets (1-10): 11
Invalid number of tickets!
Enter number of tickets (1-10): 5
Enter age for person 1: 40
Enter age for person 2: 42
Enter age for person 3: 67
Enter age for person 4: 8
Enter age for person 5: 10
Total price = 546 SEK

16

	Command line basics
	The most important windows in Matlab
	Changing working directory
	Simple Matlab commands
	Creating variables
	Semicolons
	Special variable ans
	Variables names
	Do not use these variables names
	clear command
	lookfor function
	help function
	doc function

	Scripts
	Write a script
	Importance of clear
	Debugging (breakpoints)

	Receiving user input
	Conditional statements
	Boolean data type
	Conditional expressions
	if statement
	else statement
	elseif statement
	and/or/not operators
	And
	Or
	Not

	Switch statement
	For loops
	Hello world 20 times
	Hello world with numbers
	Sum of numbers from 1 to 10

	While loops
	Infinite loops
	break statement
	continue statement

	Homework 1

